ONCOLOGY 520

"Cell Cycle Control" January 31, 2012

Dr. Gordon Chan 4326 CCI 432-8433 Gordon.Chan@albertahealthservices.ca

Concept 1 Cell cycle regulation: Cyclin dependent kinases

Concept 2 Mechanism of cell cycle regulation: reversible phosphorylation Cyclin dependent kinase inhibitors

Concept 3 Mechanism of Cell cycle regulation: Ubiquitin mediated degradation drives the cell cycle

Concept 4 Dysregulation of the cell cycle in cancer

2

The Nobel Prize in Physiology or Medicine 2001

The Nobel Assembly at Karolinska Institute has awarded the Nobel Prize in Physiology or Medicine jointly to Leland Hartwell, Tim Hunt and Paul Nurse for their discoveries of "key regulators of the cell cycle". Using genetic and biochemical methods, they identified the molecules CDK and cyclin that control the cell cycle in eukaryotic organisms. These fundamental discoveries have a profound impact on many aspects of biology and medicine. CDK and cyclin are key molecules that control and coordinate DNA synthesis, chromosome separation and cell division. CDK and cyclin together drive the cell from one cell cycle phase to the next.

http://www.nobel.se/medicine/laureates/2001/illpres/index.html

17

S. cerevisiae CDC28 corresponds to a *cdc* gene in *S. pombe*, *cdc2*⁺

cdc2⁺ was identified in *S. pombe*: *cdc2*⁺ and *CDC28* are functional homologues (*CDC28* can replace *cdc2*⁺ in *S. pombe* and vice versa)

By screening a human cDNA expression library in a *S. pombe cdc2ts* mutant, the corresponding human homologue was identified - and frogs, urchins and starfish

p34^{cdc2/CDC28} is a key cell cycle regulator conserved throughout evolution

Beach, D., Durkacz, B., & Nurse, P. Functionally homologous cell cycle control genes in budding and fission yeast. Nature **300**, 706-709, 1982

...Purified MPF contained 32kd and 46 kd polypeptides Maller and Lohka The 32kd component reacted with antibodies raised against cdc2+ protein The 46kd component corresponded to a previously identified cyclin: Cyclin B Cyclin: regulatory component Cyclin Cyclin dependent · (P) Kinase Cdk Cdk: catalytic component Lohka MJ, Haves MK, Maller JL. 1988 Purification of maturation-promoting factor, an 18 intracellular regulator of early mitotic events. Proc Natl Acad Sci U S A. 85(9): 3009-13.

Cyclin	Regulatory subunit
	Forms association with CDKs
during	Accumulated during the cell cycle and are destroyed mitosis
	20

<text><text><text><text>

CDK	Cyclin partner	Cell cycle phase activity
CDK4	Cyclin D1, D2, D3	G1 phase
CDK6	Cyclin D1, D2, D3	G1 phase
CDK2	Cyclin E	G1/S phase transition
CDK2	Cyclin A	S phase and G2
CDK1 (cdc2)	Cyclin A	G2/M phase transition
CDK1 (cdc2)	Cyclin B	Mitosis
CDK7 (CAK, CDK activating kinase)	Cyclin H	CAK, all cell cycle phases
CDK5	p35	Neuronal differentiation
CDK8	Cyclin C	Transcription

S Phas	Se	
Cdk2	- Required - for onset of S	
	- S phase partner is cyclin A	
Cyclin A	 Associates with cdk2 Has a role in S phase progression (Cdk2-cyclin A complex is required for continued DNA replication) Co-localizes with components of the replication machinery 	

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

Cyclin Grouping Based on Sequence Similarities				
Group 1:	Cyclins A, B, D1, D2, D3, E and F Implicated in <i>cell cycle control</i>			
Group 2:	Cyclins C and H Potential role in <i>transcriptional regulation</i>			
Group 3:	Cyclins F1, G2 and I Mediating <i>checkpoint</i> in response to DNA damage			
Group 4: Oncogene 13:1103	p35 Lacks cyclin sequence similarity but functions as a <i>CDK activator</i> 3, 1996			

Summary I:

Key concept – cell cycle is driven by Cdk/cyclin activity which is regulated by multiple phosphoryation/ dephosphorylation events

- The cell cycle is regulated by a family of cyclin dependent kinases (cdks) and its binding partner, cyclins.
- Cyclins are obligate positive binding partners of cdks.
- The cdk/cyclin complexes are further regulated by activating and inhibiting phosphorylation events.
- The T-loop contains the site of the activating phosphorylation and blocks the substrate binding site.
- Cdk activation is mediated in 2 steps:
 - 1. cyclin binding to Cdk induces conformational changes in the Cdk protein that alter the positions of catalytic residues and allows proper orientation of the ATP for catalysis (5 fold increase in activity). The T-loop is also displaced from the substrate cleft.
 - Thr160 (Thr161 in Cdk1) is then phosphorylated by the Cdk-activating kinase (CAK), leading to a further 100-fold activation.

Summary I (cont.):

- Cdk activity is also regulated by inhibitory phosphorylations of Tyr15 and Thr14.
- The mechanism of inhibition is through blocking of ATP binding and phosphate transfer.
- Tyr15 and Thr14 are inaccessible in monomeric Cdks but become exposed when cyclin is bound to Cdk.
- Wee1 and Myt1 kinases are responsible for the inhibitory phosphorylation.
- The Cdc25 phosphatase is responsible for removing the inhibitory phosphorylation.
- The multiple levels of control allows for precise regulation.

STOP	Cdk Inhibitors (CKIs)	
	KIP Family (<u>K</u> inase <u>I</u> nhibitory <u>P</u> rotein)	
	p21 p27 p57	
	INK4 Family (<u>In</u> hibitor of CD <u>K4</u>)	
	p16 p14 p15 p18	
	μιο	37

p21	aka Cip1, WAF1
	Transcription is p53 dependent
	Inhibits virtually all Cdks
	Contains independent Cdk and PCNA binding domains each of which is required and sufficient for inhibition of these proteins
	Expression elevated in terminally differentiated cells

p57	aka Kip2
	Sequence similarity to p27 but not p21
	Has p21/p27 inhibitory domain
	Expressed in <i>tissue specific manner</i> (placenta, muscle, heart) suggesting a specialized role in cell cycle control
	41

p16	aka MTS1, INK4a	
	Inhibitor of Cdk4 and Cdk6	
p14 ^{ARF} p19 ^{ARF}	Alternate reading frame protein encoded by the p16 locus	
	No amino acid similarity to p16 or other proteins	
		43

p15	aka INK4b
	Adjacent to INK4 locus
	Frequently co-deleted with p16
	Up-regulated by TGF-β in cascade effect (displaces p27 which is then free to bind cyclin E/Cdk2 to result in G1 arrest.)
p18	Predominately expressed in hematopoietic (blood) cells
	44

Structural Effects of Cip/Kips and INKs

p27 Binds CyclinA/Cdk2

Binds both cyclin and Cdk

N-terminus binds cyclin groove to block substrate interaction

C-terminus destabilizes ATP binding

C-terminus binds T-loop, blocks CAK

Sequence conservation suggests similar mechanism for p21 and p57

p19 Binds Cdk6

Binds opposite face from cyclin

Binds catalytic cleft, distorts ATP binding site

Attracts T-loop, prevents substrate entry and Thr160 phosphorylation

Contacts residues specific to Cdk4/6 (these residue are *not* find in Cdk1 or Cdk2)

Sequence conservation suggests similar mechanism for p15, p16 and p18

46

Summary II: Key concept – Cdk/cyclin kinase activity is regulated at multiple levels

- Two families of CKI inhibitors, CIP/KIP and INK4.
 - 1. The CIP/KIP (p21 and p27) proteins bind to Cdk/ cyclin and block block substrate interaction, destabilize ATP binding and block T-loop CAK phosphorylation.
 - 2. INK4 family proteins inhibit binding of Cdk4 and 6 to D-type cyclins
 - 3. INK4 proteins can also inhibit the activity of preassembled cyclin D/cdk4 and cyclin D/cdk6 complexes.

Figure 18-7. A typical time course for mitosis and cytokinesis (M phase) in a mammalian cell. The times vary for different cell types and are much shorter in embryonic cell cycles. Note that cytokinesis begins before mitosis ends. The beginning of prophase (and therefore of M phase as a whole) is defined as the point in the cell cycle at which condensed chromosomes first become visible - a somewhat arbitrary criterion, since the extent of chromosome condensation appears to increase continuously during late G2. The beginning of prometaphase is defined as the time when the nuclear envelope breaks down.

Molecular Biology of the Cell, 3rd edn. Part III. Internal Organization of the Cell Chapter 18. The Mechanics of Cell Division © 1994 by Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson.

are shown alongside the rapid kinetics of Clb5– Cdk1 activation in the budding yeast, *Saccharomyces cerevisiae*. The ability to accumulate inactive Clb5–Cdk1 molecules is mediated by the Cdk inhibitor Sic1. The concerted destruction of Sic1 — by G1-cyclin–Cdk-complexmediated phosphorylation and Cdc4-mediated ubiquitylation — and concomitant activation of Clb5–Cdk1, promotes an irreversible transition to S phase. G1, Gap phase 1; S, DNA synthesis.

and R.W. Cole.)

Periodic transcription of cyclin E at the G1–S boundary coupled with ubiquitin-mediated proteolysis of active cyclin-E–Cdk2 complexes limits the interval of cyclin-E protein accumulation in mammalian cells. Cyclin-E autophosphorylation is followed by Cdc4-mediated ubiquitylation and degradation of cyclin E. Evidence indicates that persistence of cyclin E outside of this window can be deleterious to cells. G1 and G2, Gap phases 1 and 2; M, Mitosis; S, DNA synthesis.

52

"The cell cycle is a series of degrading events"

Cell cycle is regulated by destruction of cyclins

Ubiquitin-mediated proteolysis

A "destruction box" is shared by all mitotic cyclins

There may be cyclin-specific ubiquitin-conjugating enzymes that may be active only at certain times of the cell cycle.

States of the Cell Cycle are generated by Proteolysis

Different complements of proteins are present in different cell cycle states

The Cell Cycle is Co-ordinated by Ubiquitindependent Proteolysis

Effectively an interplay between the SCF and the APC/C

SCF = Skp1 + Cullin + F-box protein

APC/C = Anaphae Promoting Complex/Cyclosome

62

Cdc20			
Only recognizes	Destruction box		
Only binds phos	phorylated APC/C		
Regulated by	the mitotic checkpoint Emi1(Early mitotic inhibitor Rca1(Regulator of Cyclin A Proteolysis <i>by Cdh1</i>) 1)	
Cdh1			
Recognizes D-b	ox and KEN box	Substrates (KEN box) RMSKYKENKSENKKTVPQ SGVSTNKENEGPEYPTKIE	H. sapiens Sgol S. cerevisiae Hsll
Binds unphosphorylated APC/C		MVNTDNKENEPPNMEKAHM NNLLDDKENQDPSSQQFGA MPANEDKENNIVYTGNESS NNPSOVKENLSPAKICPYE	S. pombe Mesl S. cerevisiae Clb2 S. cerevisiae Pdsl S. cerevisiae Acml
Regulated by	phosphorylation (by CDKs) Rca1	ASFLLSKENQPENSQTPTK	H. sapiens Cdc20
			71

able i Cen-cycle targets of abiquitin-mediated proteorysis						
Substrate	Organism	Ligase	Specificity factor	Cell-cycle function	References	
Securin/Pds1	H.s., S.c., others	APC/C	Cdc20	anaphase inhibitor	42,105	
Clb2	S.c.	APC/C	Cdc20, Cdh1	cyclin B (mitosis)	41,42	
Clb5	S.c.	APC/C	Cdc20	cyclin B (S phase)	106	
Cyclin B	metazoan	APC/C	Cdc20, Cdh1	mitosis	61,107-111	
Cyclin A	metazoan	APC/C	Cdc20, Cdh1	S phase, mitosis	107-109	
Cdc20	H.s., S.c.	APC/C	Cdh1	mitosis	66-68	
Plk/Cdc5	H.s., S.c.	APC/C	Cdh1	mitosis	64,68,113	
Aurora A	H.s.	APC/C	Cdh1	mitosis	114,115	
Dbf4	S.c.	APC/C	Cdc20	S phase	116	
Ase1	S.c.	APC/C	Cdh1	mitotic-spindle dynamics	42,117	
Nek2A	H.s.	APC/C	Cdh1	centrosome development	66	
Cdc6	H.s.	APC/C	Cdh1	replication	118	
Geminin	metazoan	APC/C	Cdh1	replication licensing	119,120	
Cin8, Kip1	S.c.	APC/C	Cdh1	mitotic-spindle motor	121,122	
Xkid	X.I.	APC/C	Cdh1	mitotic-spindle motor	123	
Hsl1	S.c.	APC/C	Cdc20, Cdh1	G2-M transition	71,124	
Sic1/Rum1	S.c., S.p.	SCF	Cdc4, Pop1/2	G1-S-transition Cdk inhibitor	81,82,125,126	
Far1	S.c	SCF	Cdc4	G1-S-transition Cdk inhibitor	97	
Cdc6/Cdc18	S.c., S.p.	SCF	Cdc4, Pop1/2	DNA replication	100,125,126	
Swe1	S.c.	SCF	Met30	mitosis inhibitor	86	
Cln1,2	S.c.	CF	Grr1	G1 cyclins	74,84,85	
Gic1,2	S.c.	SCF	Grr1	budding	127	
Cyclin E	H.s., D.m.	SCF	Cdc4, Ago	G1–S cyclin	54-56	
р27 ^{Кір1}	H.s., M.m.	SCF	Skp2	G1-S-transition Cdk inhibitor	16-18	
p21 ^{Gp1}	H.s.	SCF	Skp2	G1-S-transition Cdk inhibitor	28	
p130	H.s., M.m.	SCF	Skp2	G1-S-transition inhibitor	27,128	
Orc1	H.s.	SCF	Skp2	DNA replication	129	
Emi1	M.m.	SCF	β-TrCP	mitosis (APC/C) inhibitor	88,89	
Wee1	X.I.	SCF	Tome-1	mitosis inhibitor	129	

Cdc20 activates the APC/C toward its substrates cyclin B and securin.

Degradation of the cyclin B is required for eventual exit from mitosis.

Degradation of the securin promotes sister chromatid separation and the metaphase to anaphase transition. 73

Summary IV:

Key concept – cell cycle is regulated by Cdk/cyclin kinase activities as well as periodic synthesis and irreversible proteolysis of key regulatory proteins

- 1. Cell division is propelled by the oscillation of cyclin-dependent kinase (Cdk) activities, which in turn are regulated by the periodic synthesis and degradation of their regulatory subunits, cyclins.
- 2. The proteolytic destruction of cyclins as well as other cell cycle regulators (p27, p53, cdc20, securin etc.) ensure the unidirection progression of the cell cycle.
- 3. The SCF complex is a E3 ubiquitin ligase consisting of <u>Skp1</u>, <u>Cullin</u>, a <u>F</u>-box protein and Roc1. F-box proteins bind to specific substrates and recruit them to the SCF core through interaction of their F-box motif with Skp1. Cull mediates the interaction between the substrate and the E2. Roc1 is a RING finger protein that is the essential catalytic subunit of the ubiquitin ligase. 76

Levels of Regulation

Each cyclin protein is synthesized at a discrete stage.

Ectopic expression!

Cyclin Over-Exp	pression				
Cyclin D1					
Over-expresse human cancers	ed or amplifi s.	ed in a variety	of		
Breast		50%			
Head &	Neck	43%*			
Esopha	geal	30%			
Bladder		15%			
Liver		10%			
S.C. Lu	ng	10%			
*over expression at time of surgery associated with increased risk of recurrence					
			82		

cdc25A, cdc25B

mRNA and protein over-expressed in:

Aggressive Lymphomas (40-100%) Head and Neck tumors

No over-expression in *indolent* lymphomas.

cdc25C levels relatively low in all cancers.

Cancer Res. 57:2366, 1997 Int. J. Cancer 89: 148, 2000

A Cell Cycle Regulator Potentially Involved in Genesis of Many Tumor Types

Alexander Kamb,* Nelleke A. Gruis, Jane Weaver-Feldhaus, Qingyun Liu, Keith Harshman, Sean V. Tavtigian, Elisabeth Stockert, Rufus S. Day III, Bruce E. Johnson, Mark H. Skolnick

A putative tumor suppressor locus on the short arm of human chromosome 9 has been localized to a region of less than 40 kilobases by means of homozygous deletions in melanoma cell lines. This region contained a gene, Multiple Tumor Suppressor 1 (*MTS1*), that encodes a previously identified inhibitor (p16) of cyclin-dependent kinase 4. *MTS1* was homozygously deleted at high frequency in cell lines derived from tumors of lung, breast, brain, bone, skin, bladder, kidney, ovary, and lymphocyte. Melanoma cell lines that carried at least one copy of *MTS1* frequently carried nonsense, missense, or frameshift mutations in the gene. These findings suggest that *MTS1* mutations are involved in tumor formation in a wide range of tissues.

Science 264:436, 1994

Tumor type	Lines (<i>n</i>)	Deletions (n)	Deletions (%)
Astrocytoma	warden 17 binaste	14	82
Bladder	15	5	33
Breast	10	6	60
Colon	20	0	0
Glioma	35	25	71
Leukemia	4	1	25
Lung	59	15	25
Melanoma	99	57	58
Neuroblastoma	10	0	0
Osteosarcoma	5	3	60
Ovary	7	2	29
Renal	9	5	56
Total	290	133	46
Total SCIENCE • VOL. 2	290 64 • 15 APRIL 1994	133	46

Tumors With Inactivati	ng RB Mutations
Retinoblastoma	100%
Osteosarcoma	90%
 Small cell lung carcinoma 	90%
 Breast carcinoma 	30%
 Bladder carcinoma 	30%
 Malignant glioma 	30%
Leukemias	30%
 Cervical carcinoma 	15%
 Pancreatic carcinoma 	
Prostate carcinoma	
	Cobrinik, 2000 106

Inhibito Ph	rs Deleted - enotypes of CKI-Deficient Mice	
Ink4a-/- Trends Cell E	Mild proliferative expansion of the spleen High incidence of fibrosarcoma and lymphoma Increased susceptibility to tumor indu by carcinogens Increased sensitivity to transformatio by Ha-Ras Failure to senesce Decreased doubling time	uction n

Summary cont' d: Dysregulation of the cell cycle Overexpression of cyclins cont' d •Overexpression of cyclin A: · Overexpressed and amplified in soft tissue sarcoma, non-hodgkin's lymphoma, astrocytoma, and hepatoma · Might result in failure to undergo ubiquitin-mediated degradation · Leads to anchorage independence Overexpression of cyclin E • In breast, colon, prostate, kidney, pancreas and some ALLs · Might result in failure to undergo ubiquitin-mediated degradation · Correlates to aggressive disease in breast cancer and higher clinical stage and predictive of pulmonary metastases in testicular cancer Failure to degrade cyclin •Cyclin A and E might fail to undergo ubiquitin-mediated degradation Insertional mutagenesis of cyclin A by Hepatitis B virus results in deletion of the destruction box - results in cyclin A overexpression. 113

Inhibitor	IC _{ro} (uM)	Reference no.	
	10.50 (Juni)		
Purine analogues			
Dimethylaminopurine	120	Meijer & Pondaven 1988; Neant & Guerrier 1988	
N6-isopentenyladenine	55	Rialet & Meijer 1991	
Olomoucine	7	Vesely et al. 1994	
Roscovitine	0.2-0.8	De Azevedo et al. 1997; Meijer et al. 1997	
CVT-313	4.2	Brooks et al. 1997	
Purvalanol A	0.004	Gray et al. 1998	
Purvalanol B	0.006	Gray et al. 1998	
New cytokinin analogues	0.1-3.8	Vermeulen et al. 2002a; Vermeulen et al. 2002b	
Olomoucine II	0.02	Krystof et al. 2002	
NU2058	5	Arris et al. 2000	
Pyrimidine analogues			
NU6027	2.5	Arris et al. 2000	
Butyrolactone	0.6	Kitagawa et al. 1993; Kitagewa et al. 1994	
Flavonoïds			
Flavopiridol	0.4	Losiewicz et al. 1994	
Oxoflavopiridol	0.130	Kim et al. 2000	
Thioflavopiridol	0.110	Kim et al. 2000	
Paullones			
Kenpaullone	0.4	Zaharevitz et al. 1999	
Alsterpaullone	0.035	Schultz et al. 1999	
Indolinones			
Indirubin	10.	Hoessel et al. 1999	
Indirubin-3'-monoxime	0.18	Hoessel et al. 1999	
5-chloro-indirubin	0.4	Hoessel et al. 1999	
Indirubin-5-sulphonic acid	0.055	Hoessel et al. 1999	
SU9516	0.04	Lane et al. 2001	
Staurosporine and derivatives			
Staurosporine	0.003-0.009	Gadbois et al. 1992	
UCN-01	0.031-1	Wang et al. 1995: Kawakami et al. 1996	
9-hydroxyellipticine	1	Ohasi et al. 1995	
Suramin	4	Larsen 1993	
Hymenialdisine	0.022	Meijer et al. 2000	116
Toyocamycin	0.88	Park et al. 1996	